
EM Analysis in the IoT Context: Lessons
Learned from an Attack on Thread∗

Daniel Dinu1 and Ilya Kizhvatov2

1 SnT, University of Luxembourg, dumitru-daniel.dinu@uni.lu
2 Digital Security Group, Radboud University Nijmegen, i.kizhvatov@science.ru.nl

Abstract. The distinguishing feature of the Internet of Things is that many devices get
interconnected. The threat of side-channel attacks in this setting is less understood
than the threat of traditional network and software exploitation attacks that are
perceived to be more powerful.
This work is a case study of Thread, an emerging network and transport level stack
designed to facilitate secure communication between heterogeneous IoT devices. We
perform the first side-channel vulnerability analysis of the Thread networking stack.
We leverage various network mechanisms to trigger manipulations of the security
material or to get access to the network credentials. We choose the most feasible
attack vector to build a complete attack that combines network specific mechanisms
and Differential Electromagnetic Analysis. When successfully applied on a Thread
network, the attack gives full network access to the adversary. We evaluate the
feasibility of our attack in a TI CC2538 setup running OpenThread, a certified
open-source implementation of the stack.
The full attack does not succeed in our setting. The root cause for this failure is
not any particular security feature of the protocol or the implementation, but a
side-effect of a feature not related to security. We summarize the problems that we
find in the protocol with respect to side-channel analysis, and suggest a range of
countermeasures to prevent our attack and the other attack vectors we identified
during the vulnerability analysis.
In general, we demonstrate that elaborate security mechanisms of Thread make a
side-channel attack not trivial to mount. Similar to a modern software exploit, it
requires chaining multiple vulnerabilities. Nevertheless, such attacks are feasible.
Being perhaps too expensive for settings like smart homes, they pose a relatively
higher threat to the commercial setting. We believe our experience provides a useful
lesson to designers of IoT protocols and devices.
Keywords: mesh network · IEEE 802.15.4 · AES-CCM · HMAC · DPA · DEMA

1 Introduction
Over the last few years we have seen a huge increase of IoT-enabled devices available on
the market. These devices, intended to make our lives easier by collecting, processing and
exchanging data, are manufactured by various companies around the world. To foster
the development of industry-wide standards for smart devices, companies from different

∗Part of the work done while the first and the second author were an intern and an employee in the
Innovation Center Crypto & Security at NXP Semiconductors, respectively. The work of the first author
at the University of Luxembourg was supported by the CORE project ACRYPT (ID C12-15-4009992)
funded by the Fonds National de la Recherche, Luxembourg. The research of the second author at the
Radboud University was funded by the Netherlands Organisation for Scientific Research (NWO) through
the projects 13499 TyPhoon and 628.001.005 OpenSesame.

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2018, No. 1, pp. 73–97
DOI:10.13154/tches.v2018.i1.73-97

mailto:dumitru-daniel.dinu@uni.lu
mailto:i.kizhvatov@science.ru.nl
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2018.i1.73-97


74 EM Analysis in the IoT Context: Lessons Learned from an Attack on Thread

business fields gathered together in various working groups, organizations or consortia.
Their aim is to augment the smart objects’ capabilities by enhancing the communication
and data exchange between devices from different makers. This is a challenging task given
the heterogeneous nature of the IoT comprising a vast variety of devices, of which the
overwhelming majority is characterized by a multitude of constraints such as energy or
power consumption, code size and memory footprint to name a few.

The IoT ecosystem is still in its early inception stages and a lot has to be done until
all smart devices can communicate seamlessly with each other. Unfortunately, given
the current abundance of emerging standards for the IoT, there is little to no effort to
thoroughly analyse the security of these proposals. Thus, neither the companies involved
in the development of such standards, nor the end users are fully aware of the security
and privacy aspects of future connected products that will flood the market in the coming
years.

Attack Surface and Threats for Connected Devices. In the connected world,
attacks that can be mounted remotely pose a major threat. Software exploitation and
network attacks fall into this category. They require low resources (usually just a connected
PC), and do not require physical proximity.

Especially in the context of the connected home, most current devices are within
the home perimeter and physical access would mean that the attacker is already inside
the house (assuming building access as an asset). However, devices like smart locks and
cameras are on the edge or outside of the building perimeter, and thus may be physically
accessed. In the near future, we will most likely see devices for outdoor lighting or garden
sprinklers connected to the smart home ecosystem. An attack on one of such devices may
provide an entry point to the ecosystem, potentially leading to next scalable steps.

Physical proximity attacks pose a relatively larger threat in a commercial setting, for
instance a hotel where rooms are equipped with wireless door locks. If an adversary has
access to such a smart lock connected to a mesh network in her room, she might be able
to exploit it in a similar way to what we describe in this paper to get access to the hotel
network. A recent security incident targeting the access control system of a hotel [Nov17]
shows that this type of scenario is well possible; see also the physical attack on a door lock
presented in [SDK+13].

Motivation. With the growing complexity of exploit-mitigation techniques, recent
software attacks need to chain several vulnerabilities to succeed (e.g. [LL16]). Moreover,
new network protocols are designed with security in mind.

We are driven by the curiosity to see if extending the attack surface to physical attacks,
such as electromagnetic or power analysis (common in the smart card security world),
would give additional benefits to the attacker that pay off the need for physical proximity.
With the increased availability and reduced cost of both hardware and software tools for
side-channel attacks ([O’F17], [Jls17], [Dar17] to list a few) these attacks are becoming
familiar and affordable to a wide hacker community. We are interested to evaluate the
realistic effort required to apply such an attack in the IoT context.

The network layer of the connectivity stack typically relies on a master key and relatively
long-lived network keys to provide the first layer of defense against an attacker in the
proximity of an IoT device. A question raised by the designers of IoT hardware is: Do
cryptographic implementations in the network layer need protection against side-channel
attacks? We have not seen a consolidated opinion on this matter, with academic experts in
Differential Power Analysis (DPA) claiming attacks are possible (see related work paragraph
below), while industry being on the conservative side. In our view, this disagreement is due
to the lack of in-depth case studies that could demonstrate the feasibility (or infeasibility)
of such attacks.

Numerous articles and marketing campaigns advertise Thread [Thr16b] as a new,
efficient and secure solution for the connected home with the roadmap to expand into the



Daniel Dinu and Ilya Kizhvatov 75

commercial building and professional sectors. The claim of being always secure garnered
our attention and made us curious to check ourselves if this claim is true, especially in
view of the availability of OpenThread. The lessons learned from side-channel analysis
applied to the Thread networking stack could be used to improve the overall security level
of current and future protocols designed for the IoT.

Our Contribution. We perform, to the best of our knowledge, the first public side-
channel vulnerability analysis of Thread. Thread is a complex networking stack and an
exhaustive analysis would require a tremendous effort, especially when multidisciplinary
attack vectors are considered as in our work. While providing some coverage, we focus on
finding fast and effective ways to get access to a Thread network. Our contributions are:

• We perform a vulnerability analysis of Thread specifically with respect to an adversary
capable to mount electromagnetic side-channel attacks. In this context, we outline
several attack vectors to bypass the security mechanisms of the networking stack. In
particular, we target manipulations of the security material (i.e. cryptographic keys).

• We describe a fully implemented attack that chains the exploitation of network-level
mechanisms and electromagnetic side-channel analysis techniques to get unauthorized
access to an existing Thread network after several hours of acquisitions in the close
proximity of a Thread Router or Router-Eligible End Device that is already in the
network.

• We explain that the failure of the full attack is due to a side-effect of a feature not
related to security (packet fragmentation). Therefore, the protocol weaknesses we
discovered are relevant.

• We describe a range of countermeasures for the protocol and for the implementation
that can be applied whenever side-channel resistance is required.

We believe this case study provides a useful lesson to designers of IoT protocols and devices.
Our work comes early in the life cycle of future Thread products. Because of this, we
believe that it has a more profound impact, although being less impressive than breaking
an off-the-shelf Thread device.

Related Work. In the past years, numerous papers addressed various aspects of IoT
security. One notable direction is the analysis of the security and privacy of software
frameworks for the IoT [FJP16, FPR+16]. A survey of the security and privacy of
implantable medical devices and body area networks is given in [RRKS14].

Though, the impact of side-channel attacks on the security of connected objects is far
from being completely and clearly understood. A step towards this goal was made by the
following works. de Meulenaar and Standaert [dMS10] demonstrated the feasibility of
passive power analysis attacks on AES and ECC impementations in wireless sensor nodes.
O’Flynn and Chen attacked the MAC layer encryption of an IEEE 802.15.4 node [OC16]
using power analysis; they describe the approach and implement the basic steps but not the
full attack. Their attack builds on previous works of Jaffe [Jaf07] and Kizhvatov [Kiz09].
Ronen et al. [RSWO17] exploited popular smart lights to create a worm capable to quickly
spread an infection over large areas. Their work used power analysis to recover the global
AES-CCM key used to encrypt and authenticate firmware updates.

Compared to the work described in [OC16], our attack is performed in the context of
Thread. It bypasses more complex security mechanisms to affect the full Thread networking
stack and not only the standalone MAC layer. By our full implementation, we demonstrate
that the threat posed by the recovery of the MAC layer key largely depends on the context,
specifically on the upper layers, and that there may be unexpected hurdles. Additionally,
we improve the attack on AES-CCM of [OC16] by increasing the number of ciphertext
bytes under our control. As a consequence, we have to attack one AES round less to



76 EM Analysis in the IoT Context: Lessons Learned from an Attack on Thread

recover the 16-byte key. We use EM analysis and do not rely on a dedicated trigger from
the target, thus demonstrating an attack in a less invasive setting.

Therefore, to our knowledge, this work is one of the few to demonstrate an EM analysis
attack in a complex wireless network setting, and to address the security of an IoT network
protocol with respect to adversaries capable to mount side-channel attacks.

Responsible Disclosure. We informed the Thread Group in October 2016 about
our findings and proposed countermeasures. We received a confirmation of our findings.
Based on our report, the Thread Group decided to elaborate a set of recommendations for
implementers in order to enhance the security of Thread products.

2 Background

We provide a minimal recap of side-channel attacks and then we give details on Thread to
introduce the concepts used in our analysis. The systematization of Thread’s technical
details is particularly valuable considering the lack of public technical specifications.

2.1 Electromagnetic Side-Channel Attacks

Side-channel attacks exploit information gained from a device performing cryptographic
operations to determine the secret value used during the observed executions. Some popular
sources of side-channel information are time, cache hits and misses, power consumption
or electromagnetic (EM) emissions of the target device. In this work we chose to focus
on electromagnetic emissions because they can be easily acquired using a non-invasive
measurement technique (i.e. by placing an EM probe in the vicinity of the target device).
The attack is performed in two phases. In the acquisition phase, the attacker, equipped
with a digital oscilloscope, an EM probe, and optionally an amplifier, captures the EM
emissions of a device while it performs cryptographic operations for various inputs using
the same secret key. Then, in the attack phase, the attacker uses statistical tools to
correlate the recorded EM traces with a hypothetical model based on the known input
and a key guess. The most likely key used during the observed computations will give the
highest correlation value.

The Pearson correlation coefficient was initially used in the context of Correlation
Power Analysis (CPA) attacks [BCO04] to measure the correlation between the acquired
power traces and the hypothetical power consumption, but it can be used for EM traces as
well. Indeed, the power consumption and EM emanations of a device are strongly linked.
Quisquater and Samyde [QS01] and then Agrawal et al. [AARR02] were the first to use
the EM leakage of a device as a source of side-channel information. In contrast with the
classical Differrential Power Analysis (DPA) attacks [KJJ99] introduced by Kocher et al.,
the CPA attacks are more efficient and reliable, but more computationally intensive.

Template attacks are the strongest type of side-channel attacks in an information
theoretic sense [CRR02]. They assume the attacker has full access to a similar device to
the one to be attacked. She uses this device to build patterns for different operations
and input values. The result of this profiling phase is the so-called templates. Then,
the attacker matches the recorded leakage from a limited set of observations (one or
few traces) of the target device with the recorded templates to recover the secret value.
However, the creation of templates is a daunting task. Experimental results show that in
practice template attacks suffer from the variability caused by different devices or different
acquisition campaigns [CK14]. For more details on power analysis attacks we refer the
reader to [MOP07].



Daniel Dinu and Ilya Kizhvatov 77

2.2 Thread
Supported by more than 200 companies, including most major players in the IoT arena,
the Thread Group [Thr16b] is a nonprofit organisation that promotes Thread’s use in
connected home solutions. Thread is a network and transport level stack of protocols
designed to simplify consumer lifestyles by controlling and connecting products at home.
In November 2016, the Thread Group announced the expansion of Thread beyond the
connected home to commercial spaces where people work [Thr16c]. Nest released an
open-source implementation of Thread, called OpenThread, on GitHub [Ope16] in May
2016. As of October 2017, the OpenThread GitHub repository is supported by ten members
of the Thread Group and is an important resource for hobbyists and early adopters who
cannot afford the membership fee. OpenThread runs on a number of wireless hardware
platforms.

Based on well-established technologies, the Thread networking stack is built on top of
physical and data link layers of IEEE 802.15.4 [IEE17], operating at 250 kbps in the 2.45
GHz band [Thr16b]. Thread uses 6LowPAN to enable IPv6 addressing of up to 250 devices
per network. The mesh network topology of Thread accommodates up to 32 routers to
create a resilient network with no single point of failure. It provides an efficient way to
forward messages between nodes using the RIPng distance vector routing protocol. For its
transport layer, Thread uses UDP and DTLS. CoAP is used as application layer for the
commissioning of new devices.

Thread devices are classified into two groups (see Table 1) based on power requirements
and resource characteristics: Full Thread Devices (FTDs) and Minimal Thread Devices
(MTDs).

• An FTD is usually supplied directly from the power lines, but it can also run on
batteries. An FTD can have three different roles in a Thread network: Router,
Router-Eligible End Device (REED), and Full End Device (FED).

• An MTD runs a lighter version of the Thread stack with reduced capabilities due
to its limited resources; it usually runs on batteries. An MTD can have one of the
following roles: Minimal End Device (MED) or Sleepy End Device (SED).

A key difference between FTDs and MTDs is that FTDs keep a communication link
with neighboring Routers, while MTDs do not. A device that is not a Router is called an
End Device (ED) and it is attached to a Parent with whom it communicates through a
direct link.

A device attaches to a Thread network as an ED. During the lifetime of a Thread
network, a device can have different roles at different moments of time. For example, a
REED can become a Router if the network configuration is favorable; similarly, a Router
can become a REED. A Thread network is managed by a Router autonomously elected
by the network and called Leader. The Leader assigns router addresses, collects and
distributes information about the network state to all Routers. If the current Leader
becomes unavailable, another Router will replace it. A Thread Router having other network
interfaces (Ethernet, Wi-Fi, Bluetooth, etc.) is called a Border Router. It can forward the
traffic between the Thread network and other networks.

Network security is enforced at the MAC (Media Access Control)1 and MLE (Mesh
Link Establishment) layers using AES in CCM mode [Ope16]. All communication within
a Thread Network is secured, except for MLE Discovery Request and MLE Discovery
Response messages. Commissioning security is based on a DTLS tunnel established using
elliptic curve J-PAKE and the NIST P-256 elliptic curve.

1Note that MAC denotes Message Authentication Code when used in cryptographic context. In this
paper, to avoid confusion we use this abbreviation solely in the networking interpretation to denote Media
Access Control. The only exclusion is HMAC, where MAC keeps its cryptographic meaning.



78 EM Analysis in the IoT Context: Lessons Learned from an Attack on Thread

Table 1: Device types and roles in a Thread network.
Type Role Description End Device (ED)

FTD
Router acts as a router 7
REED can act as a router 3
FED will never act as a router 3

MTD MED always on 3
SED sleeps most of the time 3

2.2.1 Security Material

Once successfully commissioned into a Thread network, the connected device gets the 16-
byte network master keyMK used to secure Thread communication and the Commissioning
Key CK used to secure Thread commissioning [Ope16].

Each node keeps its own 4-byte Sequence counter in synchronization with neighboring
devices through the use of designated fields in the security header of MAC frames (1-byte
Key Index) and MLE messages (4-byte Key Source). The 1-byte Key Index is computed
from the 4-byte Sequence number:

KeyIndex = (Sequence ∧ 0x7F) + 1 (1)

Thread communication is secured using a 16-byte MAC key KMAC or a 16-byte MLE
key KMLE . These keys are derived from the 4-byte Sequence number concatenated with
the ASCII binary representation of the string "Thread" (0x54 0x68 0x72 0x65 0x61
0x64) using the keyed-hash message authentication code (HMAC) function HMAC under
the network master key MK as described below. The hash function used is SHA-256.

KMAC ‖ KMLE = HMACMK(Sequence ‖ “Thread”) (2)

Fresh MAC and MLE keys are generated when the default key rotation timer (set to
672 hours) expires. The Sequence number is incremented by one, the KeyIndex value
is updated, the HMACMK function is executed and the key rotation timer is rearmed.
When refreshing the keys, the outgoing MAC and MLE frame counters are reset to zero.

When receiving an MLE message with a different Sequence number set in the Key
Source field, the receiver computes a temporary key using the received sequence as
described in Equation 2. In the case of MAC frames, if the received KeyIndex is not
equal to the computed KeyIndex from Equation 1, the receiver will generate a temporary
key only when the absolute difference between the two values is one. This temporary key
allows a node to synchronize with its Parent after a period of absence from the Thread
network.

Each Thread node, regardless of its type and role, stores the security material and
network parameters of the Thread network to its non-volatile memory to be able to rejoin
the network after a reset without human intervention.

2.2.2 MLE

The Mesh Link Establishment (MLE) protocol facilitates the secure configuration of radio
links and exchange of network parameters. The MLE messages are sent inside UDP
datagrams with the source and destination ports set to 19788. The security of MLE
messages is provided by AES in CCM mode using the MLE key KMLE . The Auxiliary
Security Header, Source IP address and Destination IP address are authenticated
using a 32-bit message integrity code (MIC), while the payload is encrypted. The Auxiliary
Security Header of an MLE message includes the 4-byte Key Source.



Daniel Dinu and Ilya Kizhvatov 79

A Thread Router periodically multicasts MLE Advertisement messages to advertise
its presence. Such a message is sent at an interval between 1 and 32 seconds after the
previous advertisement was sent by the same Router. The Thread REEDs advertise their
presence by multicasting a similar message every ten minutes on average.

The process of establishing a communication link between two Thread nodes N1 and
N2 is depicted in Figure 1. In this case, the Child node N1 is creating a communication
link with its Parent N2 in three phases: Attaching, Child Synchronization, and Link
Synchronization. This message exchange occurs, for example, when an MTD reconnects to
a Thread network.

Before initiating the MLE message exchange shown in Figure 1, the Child sends an
MLE Discovery Request to locate the existing Thread devices. It gets in response an
MLE Discovery Response message containing the Thread network channel number and
its PAN ID.

In the Attaching phase, the Child (N1) multicasts an MLE Parent Request message
with a randomly generated 8-byte challenge. All Routers and REEDs that receive this
request store the received challenge and answer with an MLE Parent Response message
including the received challenge and a new random 8-byte challenge. N1 selects one of
the answers it receives based on the link quality and unicasts an MLE Child ID Request
message that includes the received challenge to the corresponding node N2. The Parent
sends an MLE Child ID Response which may include the network configuration parame-
ters. Then, the Child Synchronization takes place. The Child sends an MLE Child Update
Request to its Parent and gets in response an MLE Child Update Response message.

The communication link is established in the Link Synchronization phase. Initially, the
Child multicasts an MLE Link Request message containing an 8-byte random challenge.
The Parent answers with an MLE Link Accept & Request message that includes the
received challenge and a new randomly generated challenge. The Child confirms the Parent
request by sending an MLE Link Accept message, which includes the challenge received
from the Parent.

Child (N1) Parent (N2)

MLE Parent Request
MLE Parent Response

MLE Child ID Request
MLE Child ID Response

Attach.

MLE Child Update Request
MLE Child Update Response

Child
Sync.

MLE Link Request
MLE Link Accept & Request

MLE Link Accept
Link
Sync.

Figure 1: Establishing a communication link between two Thread nodes.

3 Threat Model
The are numerous avenues an attacker can try to compromise a Thread network. While
some threats were well understood and properly mitigated in the design phase of the
networking stack, others were less obvious and thus overlooked. The latter ones are harder
to eliminate as the protocol becomes more mature and widely used [Mic17]. We make



80 EM Analysis in the IoT Context: Lessons Learned from an Attack on Thread

a classification of the possible attack types in the IoT environment, without aiming at
a complete coverage of all threats specific for these settings. The threat modeling we
performed for Thread can be easily adapted for other IoT protocols and the lessons learned
from this study can be employed to protect other IoT solutions as well.

The goal of our threat model is to provide a classification and a better understanding
of Thread’s attack surface. The attacker attempts to affect one or more of the basic
security functions: confidentiality, integrity, and availability. The primary goal of the
attacker is to get access into a Thread network in order to intercept and understand the
communication or to take control of the network. Other objectives include, but are not
limited to, disrupting the normal network operation by performing a DoS attack or altering
data sent across the network through a man-in-the-middle attack.

Similar to the work of Atamli and Martin [AM14], we consider three main entities that
can threaten the security of an IoT system: legitimate user, device maker, and malicious
adversary. A legitimate user poses a threat to the security of an IoT system when, for
example, she seeks to bypass the authentication, authorization, and accounting mechanisms
used by the target system. In this way, she might unlock restricted features of the device
or use the existing ones without paying for them. A device maker can threaten the security
of an IoT system either accidentally (e.g. poorly implemented security mechanism) or
deliberately (e.g. aiming to collect user’s data). Finally, a malicious adversary is the
classical attacker willing to get unauthorized access to a system or to damage that system.
Unlike a legitimate user, a malicious adversary may not always have proximity to the
target system (consider e.g. a thermostat that is inside the house of a legitimate user).

Depending on the location of the attacker with respect to the target system, we
distinguish between: remote, proximity, and invasive attacks. The powerful remote attacks
are well understood from the classical Internet-connected systems. Although, some IoT
protocols such as Thread assume that not all IoT devices inside a network are directly
accessible from the Internet. Thus the attack surface of remote attacks on IoT networks
is reduced compared to the attack surface of the same attacks on the classical Internet.
The IoT is a highly heterogeneous environment with devices deployed in various, including
distant, locations. In such settings, it is hard to enforce the physical security of these
systems that become vulnerable to proximity and even invasive attacks. Proximity attacks
can be performed without physical access to the target device and thus are harder to
detect than invasive attacks. A summary of the attack types specific to the IoT is given
in Table 2.

Table 2: Summary of the attack types specific to the IoT.
Attack Type Attack Mitigation

remote
software exploitation system hardening
guessing password strong security policybrute force

proximity EM analysis side-channel
countermeasuresinvasive

power analysis
fault attacks
flash read out read out protection

Proximity attacks are very feasible in the IoT since most protocols use wireless com-
munication means and are deployed in easily accessible spots. Hence, the attacker can
easily get in the proximity of a Thread device and observe it performing various operations.
Given the ubiquitous nature of the IoT, it is expected that the attacker is able to quickly
identify such target devices. We assume the attacker can carry a portable oscilloscope and
an EM probe required to perform an EM analysis attack.

We do not restrict the attacker’s capabilities in terms of equipment or physical location



Daniel Dinu and Ilya Kizhvatov 81

to accurately capture the current state of security in the IoT with respect to EM analysis
attacks.

4 Side-Channel Vulnerability Analysis

The goal of our vulnerability analysis was to investigate attack paths that can provide
full access to a Thread network. This allows us to sniff and understand all network traffic,
to add new devices into the network, and to take control of the network by changing the
security material. In order to achieve this, we explored different attack vectors to recover
the security material of the network. We first explore the feasibility of several active
attacks paths; these are attacks in which the attacker injects packets to trigger different
operations on the target nodes. Then, based on the results of the active attacks, we can
estimate how successful a passive attack exploiting the same mechanism could be.

We did not look for implementation-specific issues such as buffer overflow attacks,
fragmentation attacks, or improper input sanitization, because they would be meaningful
only for a particular software implementation. We did not include attacks that affect the
availability of the network such as denial-of-service (DoS) attacks in our scope. Below we
present the most promising attack paths. Other attack paths are described in Appendix A.

4.1 Relationship between MK and KMLE

Having the master key MK and Sequence number, a node can compute the MLE key
KMLE using Equation 2. If a node possesses the MLE key KMLE but does not have the
master key MK, it can send an MLE Child ID Request to ask for the network master
key. Its Parent will answer with an MLE Child ID Response, which includes the Master
Key TLV containing the requested master key MK. This means that MK and KMLE are
equivalent, in the sense that if a node has one of them, it can easily compute or retrieve
the other one. Giving access to the master key to nodes having a key derived from it
generates serious security issues as we will describe later.

However, this approach has a major limitation. The Master Key TLV is just a small
fraction of the data included in the MLE Child ID Response. Although the attacker
can ask for some specific TLVs in his request, the Parent decides the exact content of
the response message. If the answer fits into a single MLE message, then the response
is encrypted only at the MLE layer. As the total payload length of the MLE Child ID
Response message exceeds the maximum transmission unit (MTU) of 127 bytes, the MLE
message is fragmented at the 6LowPAN layer. When fragmentation occurs, all resulting
fragments are encrypted at the MAC layer using KMAC . Thus, the attacker has to first
decrypt the MAC frames, then to reassemble the fragments of the original MLE message,
and finally to decrypt the MLE message in order to get the value of the Master Key TLV.

Hence, the attacker can get the master key when she knows only the MLE key if the
response MLE message is not fragmented and thus not encrypted at the MAC layer. We
note that this mechanism is not affected by the OBTAIN_MASTER_KEY bit of the Security
Policy TLV. When set, the OBTAIN_MASTER_KEY bit enables a Commissioner to extract
the master key for out-of-band commissioning after she was authenticated.

This mechanism does not help a node to reconnect to a Thread network if the network
master key was changed while it was sleeping because the node does not possess a valid
MLE key to ask for the new master key. Thus its MLE requests will be dropped, and it
has to be commissioned again by a human to the Thread network.



82 EM Analysis in the IoT Context: Lessons Learned from an Attack on Thread

4.2 Processing of an MLE Parent Request

An obvious option for an attacker is to exploit the very first message exchange that allows a
Child to connect to a Parent in a Thread network. Next we detail how a Router processes
the first message sent by a Child that wishes to establish a communication link with a
Parent.

Upon receipt of an MLE Parent Request message, the receiving Router extracts the
received Sequence number from the Key Source field. Then, it compares the value of
the received Sequence with its current internal Sequence number. There are two possible
cases:

• If the two sequence numbers are equal, then the Router continues by processing the
authentication tag of the received MLE message using the current MLE key KMLE

of the Thread network.

• If the two sequence numbers are not equal, then the Router derives a temporary
key from the received Sequence number. The Router uses this temporary MLE key
K ′

MLE to process the authentication tag of the received message.

If the resulting tag is the same as the authentication tag present in the received MLE
Parent Request message, then the Router prepares a response. Else, it will drop the
received MLE message.

Whatever processing path the Router follows, it will perform at least an AES-CCM
operation on the received message. Thus, an attacker can easily trigger executions of
HMAC-SHA256 or AES-CCM by pretending to be a Child willing to connect to a Parent.
If the attacker chooses to trigger HMAC-SHA256 executions on the receiving Router,
she has to inject MLE Parent Request messages with a different Sequence number from
the one observed in MLE Advertisement messages. On the other hand, if the attacker
is interested in observing AES-CCM computations with the current network MLE key
KMLE , she has to inject MLE Parent Request messages with the same Sequence number.
Hence, an attacker not yet connected to the target Thread network can take advantage of
a normal network mechanism used to establish a communication link between a Child and
a Parent Router to trigger executions of the underlying cryptographic algorithms with
sensitive key material at her own will.

4.3 Attack on Key Generation
An attacker can inject MLE Parent Request messages with a chosen Sequence number.
When receiving an MLE Parent Request with a different Sequence number from its own
Sequence number, a Router will derive a temporary MLE key using Equation 2.

Although it is possible to trigger executions of the HMAC function, the number of
input bytes controlled by attacker is not enough to make the recovery of the master key
MK possible as we show next.

The key derivation is pictorially shown in Figure 2. The one-way compression function
of SHA-256 is denoted by F . The input message m to the HMAC function is obtained by
concatenating the 4-byte Sequence number with the 6-byte representation of the “Thread”
string, the 46 bytes of padding, and the 8-byte message length len: m = Sequence ‖
“Thread” ‖ 0x80 0x00 . . . 0x00 ‖ len. It is easy to observe that the only variable part of
the message m is the Sequence number. Thus, the attacker controls exactly four bytes of
the input message of the HMAC function.

If the attacker could recover k1 = F (IV,MK ⊕ ipad) and k2 = F (IV,MK ⊕ opad),
then she could generate the MLE and MAC keys having only the correct Sequence number,
but not the master key MK. Though, having the current MAC and MLE keys of the
Thread network, the attacker can get the network master key from a Thread node as



Daniel Dinu and Ilya Kizhvatov 83

IV F

MK ⊕ ipad

F

m

IV F

MK ⊕ opad

F KMAC ‖ KMLE

k1

k2

Figure 2: Key generation using HMAC.

described in Section 4.1. In order to recover k1 and k2, the attacker will target executions
of the compression function F (k1,m). The attacker controls four bytes (a 32-bit word) of
the input message, which are mixed in the first iteration of the compression function F
with constant but unknown bytes of the internal state. As a consequence, she can learn
the relationship between four unknown but constant 32-bit words by attacking a 32-bit
modular addition in the first iteration. The attack stops here, because the attacker cannot
propagate it to the next iterations in absence of known and variable data.

Thus, an attacker cannot exploit executions of the HMAC function in unprotected
implementations using a CPA attack due to the limited control she has over the input.
Though, the attacker still has the option to perform a template attack. Due to the
complexity of the profiling phase required for mounting a template attack, we decided to
stop our investigation at this point and to explore other attack paths instead.

4.4 Attack on the AES in CCM Mode
By injecting MLE Parent Request messages with the same Sequence number as the one
used by the target Thread network, an attacker triggers executions of the AES in CCM
mode with the current MLE key on the receiving Routers and REEDs.

A typical input block for the two stages (AES-CBC and AES-CTR) of the AES-CCM
is shown in Figure 3. The constant (fixed) input bytes are given in hexadecimal notation,
while the variable bytes are colored in gray. The first input block of the AES in CBC mode
is very similar to the first input block of the AES in CTR mode. The first input byte is used
for flags and thus is fixed. The last three input bytes are also fixed. The antepenultimate
byte specifies the security level (0x05). As in the MAC layer of IEEE 802.15.4, this value
indicates the use of encryption and authentication with a 4-byte message integrity code
(MIC). In the case of AES-CBC the last two bytes are used to indicate the input plaintext
length, while in the case of AES-CTR they represent the counter value. The counter
value starts from one because the all-zero counter value is used for the computation of
the authentication tag [Dwo07]. The variable bytes for both input blocks are the 8-byte
source MAC address and the 4-byte frame counter.

(a) 49 Source MAC Address Frame Ctr 05 00 15

(b) 01 Source MAC Address Frame Ctr 05 00 01

Figure 3: Input format for the first block of (a) AES-CBC and (b) AES-CTR.

An attacker can choose to craft MLE Parent Request messages having different payload
lengths. As a consequence, the last byte of the AES-CBC is variable. This additional
variable byte does not improve the attack outcome, but it is very likely to trigger an alert



84 EM Analysis in the IoT Context: Lessons Learned from an Attack on Thread

for abnormal network traffic in an intrusion detection/prevention system (IDS/IPS), if
any.

To successfully mount a CPA attack, the attacker needs to vary a part of the input of
the AES-CCM executions. As shown, an attacker can control up to 12 bytes of the input
for AES executions. Thus, she can target either the first execution of the AES in CBC
mode or the first execution of the AES in CTR mode.

Since the attacker does not control all input bytes, she has to attack three rounds of
the AES in order to recover the 16-byte key. To propagate the CPA attack to the later
rounds, the attacker must use the method described by Jaffe [Jaf07] to compute temporary
keys that incorporate the constant input bytes. We found this MLE key recovery attack
vector very promising and we chose to exploit it. Details of the full attack are given in
Section 5.

5 Implementation of the Most Feasible Attack
In this section we describe each individual step of an attack path against a Thread network
that chains the vulnerabilities presented above in the most feasible way. Then, we present
the experimental setup we used to perform the attack. We show and analyze the results of
the attack. Finally, we discuss the cost and complexity of the full attack.

The attack consists of the following four steps:

1. The attacker eavesdrops on the network traffic and records the Sequence number
present in the MLE Advertisement messages sent by Thread Routers and REEDs.

2. The attacker observes and records the EM emanations of a target Router or REED
while she injects MLE Parent Request messages. The injected messages use the
observed Sequence number to trigger executions of AES with the current network
MLE key. The variable and known inputs necessary to perform the CPA attack are
the source MAC address and frame counter fields. They are randomly generated
for each injected message. We stress that the side-channel attack is applicable
only to Thread Routers and REEDs because they process the MLE Parent Request
messages. This step requires the attacker to be in the proximity of the target device
such that she is able to reliably measure the EM emissions. After the attacker has
recorded enough traces, she continues with the next step of the attack.

3. The attacker correlates the observed EM leakages with a hypothetical model of a
key-dependent sensitive intermediate variable in order to determine the unknown
key. In practice, CPA is an efficient technique and thus it is employed to recover the
MLE key used during the observed computations.

4. Having the current MLE key of the network, the attacker attaches to a Thread
Router. She asks the Router for the network configuration parameters including the
master key by sending an MLE Child ID Request message. The Router will give
the attacker the requested information in an MLE Child ID Response message.

It is essential for the success of the attack that all the above-mentioned steps succeed.
Failure of any of these steps will render the full attack infeasible. The success of the
last step highly depends on how the Parent handles the MLE Child ID Request messages
and on the length of the MLE Child ID Response message as discussed in Section 4.1. If
the message is fragmented and therefore additionally encrypted with the MAC key, the
attacker will need to recover KMAC . For example, the MAC key can be recovered by
mounting a CPA attack on the AES-CCM executions that use KMAC .

O’Flynn and Chen [OC16] showed how to attack the MAC layer encryption of IEEE
802.15.4 nodes. Since Thread uses the MAC layer defined in the IEEE 802.15.4 standard,



Daniel Dinu and Ilya Kizhvatov 85

the attack strategy described by O’Flynn and Chen can be easily applied to mount an
attack against the MAC layer encryption of Thread nodes. For clarity, we briefly describe
how the attack works in the context of Thread nodes. The attacker can inject custom-
crafted MAC frames that meet the following requirements. The 8-byte source MAC address
must be set to the MAC address of a neighbor of the attacked node. The first byte of the
Auxiliary Security Header must be set to 0x0D to trigger encryptions with the current
MAC layer key KMAC . As in [OC16], the attacker can control the 4-byte value of the
Frame Counter field. The high rate of MAC frames compared to MLE messages in a
Thread network creates a good opportunity for a passive attack. Hence, the attacker can
simply observe the processing of valid MAC frames instead of injecting custom-crafted
ones. Since this attack was already studied in the literature, we did not implement it.
We refer the reader to the work of O’Flynn and Chen [OC16] and the source code of
OpenThread2 for more details.

An important factor that can be controlled to a certain extent by the attacker is the
quality of the side-channel acquisition. The better the signal-to-noise ratio of the recorded
traces, the fewer traces the attacker will need. The number of traces required to recover
the MLE key influences the duration of the acquisition. Thus, the risk of the attacker
being noticed increases as she needs more EM traces. The reason is twofold. Firstly, the
attacker has to spend more time in the vicinity of the target Router or REED. Secondly,
she has to inject more messages to trigger executions of the AES.

Once the attacker has the network configuration parameters, including the security
material, she has all the rights of a genuine member of the Thread network. Hence, she is
able to communicate with other nodes and can understand the communication between
other nodes. The attacker can commission new devices to the Thread network. She can
become a Router and then change the network parameters so that the owner of the Thread
network loses the control over his network.

5.1 Experimental Setup
Thread Network. We created our own Thread network consisting of two CC2538EM
wireless microcontrollers [Tex15]. These devices were an obvious choice since they were
the first to support the OpenThread implementation [Ope16]. Moreover, our experimental
network uses one of the seven products (device and software stack bundle) certified by
the Thread Group [Thr17]. The CC2538EM microcontroller has an ARM Cortex-M3
processor clocked at 32 MHz, up to 512 KB of Flash memory and an IEEE 802.15.4 radio
transceiver. The purchasing cost of this hardware was much smaller than that of similar
devices shipped with proprietary implementations of Thread.

Initially, we experimented using the source code of OpenThread to understand the
communication and the network mechanisms. Then, we modified the source code such
that we were able to generate various sequences of messages. Following this approach
we were able to better understand the source code and we inferred part of the Thread
specifications. We emphasize that OpenThread’s codebase is very complex. Thus, un-
derstanding the relevant network mechanisms to our analysis was a challenging task that
required a tremendous effort. Finally, we modified the state machine of the OpenThread
implementation to make an attacker able to inject custom-crafted messages.

Measurement Setup. For the acquisition of the EM emissions from the target device,
we used a Teledyne LeCroy WaveRunner 625Zi [Tel16] oscilloscope. Initially, we ran AES
encryptions in a loop on the target device and we used an EM probe to locate the spots
that leak information during these executions. To hasten the process we firstly checked
the area around the chip and then several decoupling capacitors we could identify using
the schematic and layout of the board [Tex15].

2Function ProcessReceiveSecurity implemented in https://github.com/openthread/openthread/
blob/master/src/core/mac/mac.cpp

https://github.com/openthread/openthread/blob/master/src/core/mac/mac.cpp
https://github.com/openthread/openthread/blob/master/src/core/mac/mac.cpp


86 EM Analysis in the IoT Context: Lessons Learned from an Attack on Thread

(a) H-field probe. (b) Near field probe.

Figure 4: The EM probes used for measurement of the EM leakage.

We started to capture the EM signal with a relatively inexpensive NewAE H-field probe
having a 15 mm coil as shown in Figure 4a. Because we could not find a spot where we
could visually identify a meaningful pattern for alignment, we switched to a more precise
(coil sizes of about 1 mm) and relatively more expensive set of near field probes from
Langer (see Figure 4b). We set the probe a few millimeters above the target board. For
the results reported in this paper we fixed the sampling rate to 1 GS/s. A lower sampling
rate (500 MS/s) significantly affected the attack outcome, while a higher sampling rate
(5 GS/s) did not significantly improve the results.

The attacker’s board running the custom implementation of OpenThread generated
a trigger signal on an output port each time an injected message was sent. This signal
was used by the oscilloscope to record the EM emissions. The injected messages and the
corresponding EM traces acquired by the oscilloscope were saved on a personal computer.
The target board ran a genuine implementation of OpenThread and acted as a Router in
our Thread network. We stress that no dedicated trigger signal was provided from the
target board. We chose to power the target board from a regulated power supply rather
than from a PC USB port to reduce the noise. These settings accurately replicate a real
usage scenario of a Thread device.

Admittedly, the network traffic may not be similar to the one of a real Thread network
with very active data transfers. In our experiments we were able to inject our crafted
MLE Parent Requests at a rate of up to 25 messages per second. On a busy network with
a significantly higher legitimate packet rate there may be mismatches between captured
traces and packets. The number of traces for the attack may then grow. Identifying
relevant traces by pattern may address this problem.

5.2 Alignment of the EM Traces

timet0 δmin t1 δmax t2 τ

δ ∈ [δmin, δmax]
tAES

recorded samples

Figure 5: Timing of various events that occur during the acquisition of an EM trace.

Once the side-channel acquisition is over, the attacker has to align the EM traces. The
timing of different events that occur during the acquisition of a trace are shown in Figure 5.
The injected message is sent at t0 and the oscilloscope is triggered. The oscilloscope records



Daniel Dinu and Ilya Kizhvatov 87

the sampled signal between δmin and τ = δmax + tAES , while the relevant part for the
attacker tAES is between t1 and t2.

The attacker has to determine experimentally the interval in which the relevant part
of the AES execution is very likely to start at δ ∈ [δmin, δmax]. Besides, she can record a
sufficiently long interval that includes the relevant samples for most of the measurements.
For our experiments, the value of δ was in the interval [555, 564] µs, while the relevant
part of the AES execution tAES took 14.656 µs.

As illustrated by Figure 5, the relevant AES execution occurs at different locations in
the recorded traces. For the CPA attack to work, the attacker has to extract and align
the relevant samples from the recorded traces. To this end, the attacker builds a pattern
consisting of interesting samples by precisely identifying the relevant computations within
a trace. We were able to visually identify the first round of the AES in the first trace and
thus we used this part as the alignment pattern.

We explored two methods for alignment of the EM traces: Sum of Absolute Differences
(SAD) and Cross-Correlation (CC). For the sake of accuracy we quantified the precision of
the alignment for each of the two methods. We raised a signal when the relevant part of a
trace starts and we compared the corresponding sample number to the determined sample
number by the SAD and CC methods. The comparison showed that a difference between
the two values of more than three samples occurs for less than 1% of the traces. Therefore,
both methods are very efficient. We chose to use the SAD method because it was a little
bit faster while discarding slightly less traces than the CC method.

5.3 Attack Results
The most difficult step of the attack was the side-channel acquisition. Indeed, we spent
about half of the total time devoted to mount the full attack on improving the side-channel
attack outcome. This was an iterative process, which required a good understanding of
the EM leakage of the target and fine adjustments of the attack parameters. The type
and position of the probe are crucial for the quality of the side-channel acquisition.

The number and quality of the EM traces required to recover the MLE key determine
the cost of the full attack. Our experimental results showed that 10,000 EM traces are
sufficient. We note that two key bytes were much more difficult to recover than the rest. We
tried different side-channel techniques, including linear regression attacks [LPR13], but we
did not see an improvement. This behaviour is determined by the hardware characteristics
of the target device, the clock frequency, and the sequence of instructions executed by
the target device. It does not depend on the value of the attacked key byte, but on its
location. Similar results were reported in the side-channel literature [LMPT15].

The acquisition of 10,000 EM traces took about three hours. Given the cost of the
active attack, a passive attack scenario is rendered almost impossible. It is very likely that
the temporary keys are changed before the attacker has observed enough executions for
different input messages.

The last step of the attack appeared to be impossible in a recent version of the
OpenThread implementation we experimented with (commit 11c1b49), because the frag-
mentation of the MLE Child ID Response messages (and therefore their additional en-
cryption with KMAC) cannot be avoided. We do not exclude the possibility to get
non-fragmented answers from other stacks depending on the Parent implementation. Al-
ternatively, an additional DEMA to recover the KMAC can be mounted as described
above.

5.4 Improving the Attack
Although the attacker can control up to 12 bytes of the input as shown in Section 4.4, she
might want to fix the two input bytes corresponding to the key bytes that are difficult to



88 EM Analysis in the IoT Context: Lessons Learned from an Attack on Thread

recover. This requires some understanding of the target’s leakage, but it is by far easier to
perform and much more reliable than a template attack. For example, the attacker can
use a similar device running OpenThread to learn which key bytes are more difficult to
attack and then adjust the variable input bytes accordingly.

To further optimize the attack, one can search an input configuration that minimizes
the number of attacked bytes while considering the input constraints. The number of
AES rounds that have to be attacked in order to recover the full key must be kept to the
minimum value of three, since attacking more rounds requires more EM samples and thus
increases the cost of the measurement equipment as well as the duration of the offline
attack.

In our case, there are 45 out of the 210 − 1 possible input configurations that minimize
the number of attacked bytes. Compared to the straightforward attack, the improved
attack reduces the number of individual CPA attacks from 44 to 37, which results in a
16% improvement.

The novelty of the improved attack stems from the fact that the attacker can adjust
her attack strategy depending on the leakage of the target by fixing some input bytes she
can control. To the best of our knowledge, we are the first to use this attack techniques
to improve the outcome of a CPA attack. The total number of traces required to recover
the full key can be decreased by about 50%, to no more than 5,000 EM traces. Another
advantage of this approach is that the attack may pass undetected when it uses fewer
variable input bytes because the injected packets resemble normal network traffic. The
technique used to improve this attack is detailed in [BDC17].

6 Feasibility and Limitations
The main question arising is perhaps the relative complexity of the attack and the realism
of the setting where the attacker needs to be in a very close proximity of a Thread Router
or REED with a digital oscilloscope. This is a reasonable question, especially in the setting
where Thread brings IPv6 to the end nodes and opens up the remote attack surface. We
are realistic to state that the attacks we outlined are currently beyond the reach of an
average hacker familiar just with software and networking techniques (and absolutely not
for "script kiddies"), and apply only in particular settings. Appendix B shows a formalized
quantification of the attack effort common to the smart card world.

Equipment Cost. The need of specialized equipment (i.e. a digital oscilloscope,
an EM probe, and if needed an amplifier) hinders fast widespread application of the
attack. In our experiments, we have used a high-end digital oscilloscope because we
just had one available. Our experiments suggest that perhaps the cheapest available
side-channel analysis hardware, ChipWhisperer [O’F17], would not be sufficient to succeed
on most of the targets due to its relatively low sampling rate3. However, low- to mid-range
digital oscilloscopes such as the Picoscope [Pic17] should be sufficient. Combined with the
increased availability of tooling to perform the analysis part of the side-channel attack,
starting from the software tooling and tutorials of [O’F17] to higher-performance toolkits
like [Dar17] and [Jls17], this makes us claim that the attack is well feasible. With side-
channel techniques and expertise becoming more mainstream in the hacker community,
the threat of such attacks increases.

Portability. Our attack is moderate in portability. Namely, on another target family
(a different hardware or software implementation) the attacker would most likely need
to tune the side-channel attack to that target in terms of probe position, alignment
parameters, etc. Hence, she has to invest into the identification phase of the attack. Due

3O’Flynn and Chen [OC15] demonstrate synchronous sampling with clock recovery feature of Chip-
Whispeper in the power analysis setting; this feature may make ChipWhisperer applicable in the setting
we describe.



Daniel Dinu and Ilya Kizhvatov 89

to the physical nature of side-channel attacks, our complexity estimate is based on one
particular implementation we analyzed. For other implementations the complexity may be
lower or higher; the attack may require a less or more expensive oscilloscope; however, for
an unprotected cryptographic implementation we expect the same order of magnitude in
terms of the amount of traces (and therefore time).

Other Attacks. Though we considered in our analysis a side-channel capable ad-
versary, we were not excluding attack paths that do not require the use of side-channel
techniques and therefore specialized equipment. However, we did not discover any paths
that do not require specialized equipment. They may still exist, though. We did not con-
sider other implementation attacks such as fault injection attacks or timing attacks. They
may be applicable and there may be settings where they are a realistic threat, especially
timing attacks that can be performed remotely without specialized equipment [ASK07].

The advantage of our attack is that it would circumvent IP protocol protections such
as firewalls, akin to the recent ZigBee worm [RSWO17], thus may serve as a more feasible
entry-point to the system. A limitation of our attack is that it does not address the
application layer security mechanisms that would normally be deployed on top of the
Thread networking stack. However, such mechanisms are not addressed by Thread.

7 Countermeasures
Although it is desirable to achieve a defense in depth for a Thread network by employing
redundant security mechanisms, other factors such as manufacturing costs or usability
pose major constraints. Thus, a trade-off between these contradicting requirements should
be sought to ensure an appropriate level of security. Though inspired by our case study of
Thread, the countermeasures laid out next are applicable to other IoT protocols and devices
as well. They are valuable for both protocol designers and engineers of IoT products.

Tamper Resistance. We suggest the use of shielded and tamper resistant components
and cases. A trade-off between cost and product dimensions would be to insert small air
gaps between the circuitry and the external case. This would most likely require device
disassembly to enable EM analysis, making the attack more cumbersome to perform.

Protected Cryptographic Implementations. We stress that in scenarios where
side-channel attacks pose a threat, Thread implementations should employ side-channel
protection mechanisms for the manipulation of the security material. Consequently, the
loading of the security material as well as all cryptographic algorithm implementations
should use countermeasures, such as masking and hiding [MOP07]. If the cost of the
countermeasures is prohibitive, offloading the cryptographic algorithms to hardware cryp-
tographic engines might be a good trade-off. In general, it is harder (but still feasible)
to attack a hardware implementation than a software implementation, as demonstrated
in [LMPT15]. Protected hardware implementations should be considered where both high
security and high performance are necessary.

Thread-Specific Protocol Level Mitigations. We suggest to consider ways to
mitigate the presented attack paths at the Thread protocol level, changing the network
mechanisms that facilitate the attacks. Most importantly, we recommend to never transfer
the network master key MK encrypted with temporary keys KMLE and/or KMAC .
Instead, the transfer of MK should happen encrypted with a one-time ephemeral key.
Note that this is the way MK is transferred during commissioning, where a dedicated Key
Encryption/Establishment Key (KEK) is used, see Thread Commissioning White Paper
at [Thr16a].

If this is not possible, disabling or limiting the message exchange that allows a node
to get the network master key by sending an MLE Child ID Request message to its
Parent should be considered. Rate limiting the incoming MLE Parent Request messages
processed by a Parent (Router or REED) significantly slows the attacker, but care should



90 EM Analysis in the IoT Context: Lessons Learned from an Attack on Thread

be taken not to expose the network to DoS attacks. We also recommend reducing the
KMLE and KMAC default rotation time from 672 hours to 1 hour.

Generic Protocol Level Mitigations. When the cost of protecting the crypto-
graphic implementations of a block cipher is too high, fresh re-keying schemes can be used
to prevent side-channel attacks [MSGR10, MPR+11, DEM+16]. These schemes make use
of a re-keying function to generate new session keys based on the secret master key and
random nonces for every block of message to be encrypted. Although fresh re-keying has
the benefit that the re-keying function can be protected against side-channel attacks at a
much lower cost than the block cipher [DEMM14], it involves significant changes in the
protocol.

Security Certification Scheme. We recommend enforcing a security certification
scheme for Thread products in addition to the functional certification scheme currently
in place. Although a certification scheme cannot prevent new attacks, the benefits for
the security of the whole ecosystems are obvious. A security certification seal increases
consumer awareness of possible security issues and attests resistance to known attacks.
The major drawbacks are an increase of the overall price and an additional delay before
the certified products are available on the market.

8 Conclusion
We conducted the first electromagnetic side-channel vulnerability analysis of the Thread
networking stack. We described how different network mechanisms that can be learned by
the attacker from the published OpenThread code can be used to create attack vectors for
side-channel attacks. We showed that some of the side-channel attack paths are hard or
impossible to exploit in the context of Thread. We implemented the most promising attack
path that provides complete access to the Thread network. It exploits a chain of network
mechanism and side-channel attacks on executions of unprotected implementations of
cryptographic algorithms.

The full attack did not succeed in our experimental network of OpenThread nodes. We
consider the setting where the last attack step is indirectly prevented by the MLE Child
ID Response payload size to be insufficient to rely upon. Firstly, it is not in the design
of the protocol that the master key is protected by both KMLE and KMAC . Additional
protection by KMAC is a side effect. Secondly, a possibility to request the master key
having the derived key(s) is questionable security-wise as it subverts the essence of key
derivation using HMAC. Hence, we suppose that the full attack may succeed with moderate
effort for other implementations of the stack, or by mounting an additional DEMA to
recover KMAC as described in [OC16].

The possibility of an arbitrary Thread device to trigger cryptographic operations and
responses from a commissioned Thread device at unlimited rate presents a standalone risk
of a denial-of-service attack.

The lessons learned from our work can be applied to other IoT systems and protocols
as well. Our threat model can be used to better shape the attack surface of future
IoT products and prevent issues such as: processing of invalid injected messages, EM
leakage, converting temporary keys into master key, and using a single network master
key to secure the whole network. In light of our results, designers of future protocols
for the IoT should carefully consider the threat of side-channel attacks from the early
inception. We recommend to apply tamper resistance for low security level, use hardware
or protected cryptographic implementations for moderate security level, and implement
protocol mitigations to achieve high security level.

In general, we demonstrated that in the context of a modern IoT network protocol
mounting a side channel attack is not trivial. Similar to a modern software exploit, it
requires chaining multiple vulnerabilities. Nevertheless, such attacks are feasible. Being



Daniel Dinu and Ilya Kizhvatov 91

perhaps too expensive for settings like smart homes, they pose a relatively higher threat
to commercial settings.

Acknowledgments
We thank the anonymous reviewers and Jacques Fournier for their helpful comments, and
our contacts in Thread Group for their feedback.

References
[AARR02] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi.

The EM side-channel(s). In Cryptographic Hardware and Embedded Systems -
CHES 2002, 4th International Workshop, Redwood Shores, CA, USA, August
13-15, 2002, pages 29–45, 2002.

[AM14] Ahmad Atamli and Andrew P. Martin. Threat-based security analysis for the
internet of things. In Gabriel Ghinita, Razvan Rughinis, and Ahmad-Reza
Sadeghi, editors, 2014 International Workshop on Secure Internet of Things,
SIoT 2014, Wroclaw, Poland, September 10, 2014, pages 35–43. IEEE Computer
Society, 2014.

[ARM17] ARM MBED. mbed TLS. https://tls.mbed.org/, 2017.

[ASK07] Onur Aciiçmez, Werner Schindler, and Çetin Kaya Koç. Cache based remote
timing attack on the AES. In Topics in Cryptology - CT-RSA 2007, The
Cryptographers’ Track at the RSA Conference 2007, San Francisco, CA, USA,
February 5-9, 2007, pages 271–286, 2007.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Cryptographic Hardware and Embedded Systems -
CHES 2004: 6th International Workshop Cambridge, MA, USA, August 11-13,
2004, pages 16–29, 2004.

[BDC17] Alex Biryukov, Daniel Dinu, and Yann Le Corre. Side-channel attacks meet
secure network protocols. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki
Kikuchi, editors, Applied Cryptography and Network Security - 15th International
Conference, ACNS 2017, Kanazawa, Japan, July 10-12, 2017, Proceedings,
volume 10355 of Lecture Notes in Computer Science, pages 435–454. Springer,
2017.

[CK14] Omar Choudary and Markus G. Kuhn. Template attacks on different devices.
In Constructive Side-Channel Analysis and Secure Design - 5th International
Workshop, COSADE 2014, Paris, France, April 13-15, 2014, pages 179–198,
2014.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
Cryptographic Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, pages 13–28, 2002.

[Dar17] DareDevil: A tool to perform (higher-order) correlation power analysis attacks
(CPA). https://github.com/SideChannelMarvels/Daredevil, 2017.

[DEM+16] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,
and Thomas Unterluggauer. ISAP – towards side-channel secure authenticated
encryption. Cryptology ePrint Archive, Report 2016/952, 2016. http://eprint.
iacr.org/2016/952.

https://tls.mbed.org/
https://github.com/SideChannelMarvels/Daredevil
http://eprint.iacr.org/2016/952
http://eprint.iacr.org/2016/952


92 EM Analysis in the IoT Context: Lessons Learned from an Attack on Thread

[DEMM14] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, and Florian Mendel.
On the security of fresh re-keying to counteract side-channel and fault attacks.
In Marc Joye and Amir Moradi, editors, Smart Card Research and Advanced
Applications - 13th International Conference, CARDIS 2014, Paris, France,
November 5-7, 2014. Revised Selected Papers, volume 8968 of Lecture Notes in
Computer Science, pages 233–244. Springer, 2014.

[dMS10] Giacomo de Meulenaer and François-Xavier Standaert. Stealthy compromise
of wireless sensor nodes with power analysis attacks. In Periklis Chatzimisios,
Christos V. Verikoukis, Ignacio Santamaría, Massimiliano Laddomada, and
Oliver Hoffmann, editors, Mobile Lightweight Wireless Systems - Second Inter-
national ICST Conference, MOBILIGHT 2010, Barcelona, Spain, May 10-12,
2010, Revised Selected Papers, volume 45 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering,
pages 229–242. Springer, 2010.

[DPN+16] Margaux Dugardin, Louiza Papachristodoulou, Zakaria Najm, Lejla Batina,
Jean-Luc Danger, and Sylvain Guilley. Dismantling real-world ECC with hor-
izontal and vertical template attacks. In Constructive Side-Channel Analysis
and Secure Design - 7th International Workshop, COSADE 2016, Graz, Austria,
April 14-15, 2016, pages 88–108, 2016.

[Dwo07] Morris J Dworkin. Recommendation for block cipher modes of operation: The
CCM mode for authentication and confidentiality. NIST Special Publication
800-38C, 2007.

[FJP16] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. Security analysis of
emerging smart home applications. In IEEE Symposium on Security and Privacy,
SP 2016, San Jose, CA, USA, May 22-26, 2016, pages 636–654, 2016.

[FPR+16] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro
Conti, and Atul Prakash. Flowfence: Practical data protection for emerging
IoT application frameworks. In 25th USENIX Security Symposium, USENIX
Security 16, Austin, TX, USA, August 10-12, 2016, pages 531–548, 2016.

[IEE17] IEEE. IEEE Standard for Low-Rate Wireless Networks. https://standards.
ieee.org/, 2017.

[Jaf07] Joshua Jaffe. A first-order DPA attack against AES in counter mode with
unknown initial counter. In Cryptographic Hardware and Embedded Systems -
CHES 2007, 9th International Workshop, Vienna, Austria, September 10-13,
2007, pages 1–13, 2007.

[Jls17] Jlsca: Side-channel toolkit in Julia. https://github.com/Riscure/Jlsca,
2017.

[Kiz09] Ilya Kizhvatov. Side channel analysis of AVR XMEGA crypto engine. In
Dimitrios N. Serpanos and Wayne H. Wolf, editors, Proceedings of the 4th
Workshop on Embedded Systems Security, WESS 2009, Grenoble, France, October
15, 2009. ACM, 2009.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, pages 388–397,
1999.

https://standards.ieee.org/
https://standards.ieee.org/
https://github.com/Riscure/Jlsca


Daniel Dinu and Ilya Kizhvatov 93

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Advances in Cryptology - CRYPTO ’96, 16th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 18-22, 1996, pages 104–113, 1996.

[LL16] Citizen Lab and Lookout. Sophisticated, persistent mobile attack against high-
value targets on iOS. https://blog.lookout.com/trident-pegasus, 2016.

[LMPT15] Jake Longo, Elke De Mulder, Dan Page, and Michael Tunstall. Soc it to
EM: electromagnetic side-channel attacks on a complex system-on-chip. In
Cryptographic Hardware and Embedded Systems - CHES 2015 - 17th International
Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings, pages 620–
640, 2015.

[LPR13] Victor Lomné, Emmanuel Prouff, and Thomas Roche. Behind the scene of
side channel attacks. In Advances in Cryptology - ASIACRYPT 2013 - 19th
International Conference on the Theory and Application of Cryptology and
Information Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part
I, pages 506–525, 2013.

[Mic17] Microsoft. Internet of Things security architecture. https://docs.microsoft.
com/en-us/azure/iot-suite/iot-security-architecture, 2017.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks -
revealing the secrets of smart cards. Springer, 2007.

[MPR+11] Marcel Medwed, Christophe Petit, Francesco Regazzoni, Mathieu Renauld,
and François-Xavier Standaert. Fresh re-keying II: securing multiple parties
against side-channel and fault attacks. In Emmanuel Prouff, editor, Smart Card
Research and Advanced Applications - 10th IFIP WG 8.8/11.2 International
Conference, CARDIS 2011, Leuven, Belgium, September 14-16, 2011, Revised
Selected Papers, volume 7079 of Lecture Notes in Computer Science, pages
115–132. Springer, 2011.

[MSGR10] Marcel Medwed, François-Xavier Standaert, Johann Großschädl, and Francesco
Regazzoni. Fresh re-keying: Security against side-channel and fault attacks for
low-cost devices. In Daniel J. Bernstein and Tanja Lange, editors, Progress in
Cryptology - AFRICACRYPT 2010, Third International Conference on Cryptol-
ogy in Africa, Stellenbosch, South Africa, May 3-6, 2010. Proceedings, volume
6055 of Lecture Notes in Computer Science, pages 279–296. Springer, 2010.

[Nov17] Matt Novak. Hackers Shut Down The Key Card Machine In This Hotel Until
a Bitcoin Ransom Was Paid [Corrected]. http://gizmodo.com/hackers-locked-
every-room-in-this-hotel-until-a-bitcoin-1791769502, 2017.

[OC15] Colin O’Flynn and Zhizhang Chen. Synchronous sampling and clock recovery of
internal oscillators for side channel analysis and fault injection. J. Cryptographic
Engineering, 5(1):53–69, 2015.

[OC16] Colin O’Flynn and Zhizhang Chen. Power analysis attacks against IEEE 802.15.4
nodes. In Constructive Side-Channel Analysis and Secure Design - 7th Interna-
tional Workshop, COSADE 2016, Graz, Austria, April 14-15, 2016, pages 55–70,
2016.

[O’F17] Colin O’Flynn. Chipwhisperer. https://newae.com/tools/chipwhisperer/,
2017.

https://docs.microsoft.com/en-us/azure/iot-suite/iot-security-architecture
https://docs.microsoft.com/en-us/azure/iot-suite/iot-security-architecture
https://newae.com/tools/chipwhisperer/


94 EM Analysis in the IoT Context: Lessons Learned from an Attack on Thread

[Ope16] OpenThread. https://github.com/openthread/openthread, 2016.

[Pic17] Pico Technology. https://www.picotech.com/products/oscilloscope, 2017.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA):
measures and counter-measures for smart cards. In Isabelle Attali and Thomas P.
Jensen, editors, Smart Card Programming and Security, International Conference
on Research in Smart Cards, E-smart 2001, Cannes, France, September 19-21,
2001, Proceedings, volume 2140 of Lecture Notes in Computer Science, pages
200–210. Springer, 2001.

[RRKS14] Michael Rushanan, Aviel D. Rubin, Denis Foo Kune, and Colleen M. Swanson.
Sok: Security and privacy in implantable medical devices and body area networks.
In 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA,
USA, May 18-21, 2014, pages 524–539, 2014.

[RSWO17] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. IoT goes
nuclear: Creating a ZigBee chain reaction. In 2017 IEEE Symposium on Security
and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pages 195–212.
IEEE Computer Society, 2017.

[SDK+13] Daehyun Strobel, Benedikt Driessen, Timo Kasper, Gregor Leander, David
Oswald, Falk Schellenberg, and Christof Paar. Fuming acid and cryptanalysis:
Handy tools for overcoming a digital locking and access control system. In
Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Part I, pages 147–164, 2013.

[SOG13] SOG-IS. Joint Interpretation Library – Application of Attack Potential to
Smartcards, January 2013. http://www.sogis.org/uk/supporting_doc_en.
html.

[Tel16] Teledyne LeCroy. WaveRunner 625Zi. http://teledynelecroy.com/, 2016.

[Tex15] Texas Instruments. CC2538. http://www.ti.com/lit/ds/symlink/cc2538.
pdf, 2015.

[Thr16a] Thread Group. Resources. https://www.threadgroup.org/ourresources,
2016.

[Thr16b] Thread Group. Thread. https://www.threadgroup.org/, 2016.

[Thr16c] Thread Group. Thread Group Broadens Focus to Encompass the Places Where
People Live and Work with Expansion Into Commercial Building Space, Nov
2016. http://threadgroup.org/news-events/press-releases/.

[Thr17] Thread Group. Thread Certified Products. http://threadgroup.org/
technology/ourtechnology#certifiedproducts, 2017.

A Additional Attack Paths
Attack on Loading the Security Material. As we have shown in Section 2, template
attacks are powerful side-channel attacks that can recover sensitive values using very few
traces. Thus, an attacker can purchase a device similar to the one to be attacked to create
EM profiles. Then, she can force the targeted Thread device to reset such that she can
observe the EM emanations corresponding to the loading of the network parameters from
non-volatile memory. In particular, the attacker is interested to capture the loading of

https://github.com/openthread/openthread
https://www.picotech.com/products/oscilloscope
http://www.sogis.org/uk/supporting_doc_en.html
http://www.sogis.org/uk/supporting_doc_en.html
http://teledynelecroy.com/
http://www.ti.com/lit/ds/symlink/cc2538.pdf
http://www.ti.com/lit/ds/symlink/cc2538.pdf
https://www.threadgroup.org/ourresources
https://www.threadgroup.org/
http://threadgroup.org/news-events/press-releases/
http://threadgroup.org/technology/ourtechnology#certifiedproducts
http://threadgroup.org/technology/ourtechnology#certifiedproducts


Daniel Dinu and Ilya Kizhvatov 95

the network master key MK and commissioning key CK. Though powerful, template
attacks depend on the quality of the templates made in the profiling phase. Thus, we did
not investigate this attack vector further.

Elliptic Curve Implementations. The execution of elliptic curve computations
might be vulnerable to timing [Koc96] or Simple Power Analysis (SPA) [KJJ99] attacks if
not properly implemented. The OpenThread implementation of the Thread networking
stack relies on mbed TLS [ARM17] for cryptographic services. Recently, Dugardin et al.
showed that the point blinding countermeasure must be activated in mbed TLS for elliptic
curve implementations to prevent horizontal and vertical template attacks [DPN+16]. We
did not investigate into this direction further.

B Quantification of the Attack Effort
There is no standard procedure to quantify the attacker’s potential to perform an attack
on an IoT device. Thus, we use an adaptation of the rating for smart cards from the
Joint Interpretation Library [SOG13] to rate our attack. The rating procedure interprets
the Common Criteria methodology based on smart card evaluation experience gained
by the industry. It is used in practice by testing laboratories to quantify the resistance
of smart cards to various attacks, including protocol and side-channel attacks. The
aforementioned procedure distinguishes two independent phases for an attack: identification
and exploitation. The identification phase refers to the demonstration of the attack, while
the exploitation phase considers the impact of the attack when all necessary tools are
readily available from the identification phase.

Table 3: Attack rating using an adaptation of the rating for smart cards from Joint
Interpretation Library [SOG13].

Factors Identification Exploitation
Rating Score Rating Score

Elapsed time more than 1 month 5 less than 1 day 3
Expertise expert 5 proficient 2
Knowledge of TOE public 0 public 0
Access to TOE less than 10 0 less than 10 0
Equipment specialized 3 specialized – standard 3
Open samples public/not required 0 – –
Sum 13 8
Total 21 (enhanced-basic)

Next, we briefly introduce the factors considered by the rating methodology. The
elapsed time defines the time required by the attacker to mount the attack from the moment
she has access to the target. The expertise reflects the knowledge the attacker should
have to mount the attack. The knowledge of the target of evaluation (TOE) indicates
the level of access to the specifications. In the case of our attack, although the access
to the official specifications is restricted, relevant information can be inferred from the
open source implementation placed in the public domain. The number of different devices
on which the attacker needs to perform the attack is captured by the access to TOE
factor. The technical resources required for the attack are comprised in the equipment
factor. Finally, the open samples factor measures to which extent the attacker is able to
modify the software running on the target device. For more details, we refer the reader
to [SOG13].

The individual scores for each factor are given in Table 3 for an implementation where
the last step of the attack is feasible. The final score of 21 classifies our attack as an



96 EM Analysis in the IoT Context: Lessons Learned from an Attack on Thread

enhanced-basic attack. The rating places our attack in between basic attacks that are easy
to perform and enhanced attacks that require an advanced effort.

C Details on Attack Target and EM Probe Performance
During our attack, the CC2538 target was running the default OpenThread configuration.
This configuration uses the T-tables based software AES implementation of mbedTLS. The
source code can be seen at https://github.com/ARMmbed/mbedtls/blob/development/
library/aes.c. The CC2538 target has an ARM Cortex-M3 core and was clocked at 32
MHz.

For the acquisition, we used the best EM probe position we could identify to reveal a
relevant pattern in the side channel traces. The relevant part (i.e. the first three rounds
of AES) of an EM trace is presented in Figure 6; it was obtained with Langer RF-K 7-4
probe4.

Figure 6: The relevant part (i.e. the first three rounds of AES) of an acquired EM trace.

It is difficult to provide an exact comparison with existing attacks on similar devices,
as many factors impact the attack complexity, including the mode of operation of the
cipher and the use of peripherals, most notably the radio (which was used in our setting).
However we believe our attack matches published results in terms of the ballpark figures.
Namely, experiments on the TI AM335x SoC clocked at 1 GHz reported by Longo et al. at
CHES 2015 [LMPT15]. They show that a DEMA attack on a software implementation of
the AES (in CBC mode) using T-tables requires 3,000 to 10,000 traces. Another reference
point is provided by Biryukov et al. [BDC17], where a DEMA attack on a Cortex-M3
clocked at 8 MHz and running a software implementation of the AES based on T-tables (in
ECB mode with limited input control) requires less than 1,600 traces. In both references,
no on-chip radio was used.

We exemplarily show the evolution of the guessing entropy for the second key byte in
Figure 7. For this key byte 2,000 EM traces are enough to recover the correct key. In
Figure 8 we give the correlation of all candidates for the same key byte when using 3,000
traces; the correlation of the correct key is shown in red.

While we have spent some effort on the optimization of the measurement setup, the
number of traces in the side-channel part of our attack may lend itself to further reduction.
We did not aim to over-optimize the side-channel setup as we believe the side-channel aspect
was already significantly studied in the literature, in particular in the above-mentioned
works. Instead, the focus of this work is to show the possibility of the full-stack attack.

4RF-K 7-4 H-Field Probe: 30 MHz up to 1 GHz, https://www.langer-emv.de/en/product/
rf-passive-30-mhz-3-ghz/35/rf-k-7-4-h-field-probe-30-mhz-up-to-1-ghz/9

https://github.com/ARMmbed/mbedtls/blob/development/library/aes.c
https://github.com/ARMmbed/mbedtls/blob/development/library/aes.c
https://www.langer-emv.de/en/product/rf-passive-30-mhz-3-ghz/35/rf-k-7-4-h-field-probe-30-mhz-up-to-1-ghz/9
https://www.langer-emv.de/en/product/rf-passive-30-mhz-3-ghz/35/rf-k-7-4-h-field-probe-30-mhz-up-to-1-ghz/9


Daniel Dinu and Ilya Kizhvatov 97

Figure 7: Evolution of the guessing entropy of the second key byte for different number of
traces.

Figure 8: Correlation of all candidates for the second key byte. The correlation of the
correct key is shown in red.

There is a possibility to use the hardware AES accelerator of CC2538 by config-
uring mbedTLS as described in https://openthread.io/guides/porting/implement_
advanced_features. Other platforms (and other Thread stacks) may also use hardware
accelerators. Based on the published experiments, we expect that switching to the hardware
AES accelerator will significantly increase the attack complexity. In particular, finding the
relevant pattern for aligning the traces may become challenging. In [LMPT15], it took
500,000 EM traces and a meticulous alignment procedure to successfully attack a HW
AES accelerator. This is why we recommend the use of HW crypto implementations as a
moderate-level countermeasure for the connected device setting.

https://openthread.io/guides/porting/implement_advanced_features
https://openthread.io/guides/porting/implement_advanced_features

	Introduction
	Background
	Electromagnetic Side-Channel Attacks
	Thread

	Threat Model
	Side-Channel Vulnerability Analysis
	Relationship between MK and KMLE
	Processing of an MLE Parent Request
	Attack on Key Generation
	Attack on the AES in CCM Mode

	Implementation of the Most Feasible Attack
	Experimental Setup
	Alignment of the EM Traces
	Attack Results
	Improving the Attack

	Feasibility and Limitations
	Countermeasures
	Conclusion
	Additional Attack Paths
	Quantification of the Attack Effort
	Details on Attack Target and EM Probe Performance

